V prvním prázdninovém týdnu si vám dovoluji nabídnout malé ohlédnutí za činností astronomického kroužku a klubu, které již řadu let působí na naší hvězdárně.
Stát se vystudovaným astronomem nebo astrofyzikem bylo na počátku vzniku hvězdáren v 50. letech spíše snem než realitou. Veřejný vzdělávací systém tehdy nabízel pouze dvě cesty, jak se k astronomii či astrofyzice přiblížit – ani jedna z nich však nebyla příliš vhodná pro praktickou práci na hvězdárně."
Naši hvězdárnu navštívil dne 15. 5. 2025 Pavel Gabzdyl, přední popularizátor astronomie a největší fanoušek Měsíce. Mimo to, že nám přednesl krásnou přednášku Kosmická střelnice, jsme ho stihli i vyzpovídat.
Hubbleův kosmický dalekohled HST vyfotografoval nejvzdálenější aktivní kometu, jakou se doposud podařilo spatřit. V té době byla v ohromné vzdálenosti 2,4 miliardy kilometrů od Slunce, tj. daleko za drahou planety Saturn. Nepatrně zahřívaná vzdáleným Sluncem již začala vytvářet neostrý oblak prachu o průměru 130 000 kilometrů – tzv. komu – obklopující malé pevné jádro zmrzlých plynů a prachu. Tato pozorování představují nejčasnější dosud pozorované známky aktivity komety přilétající poprvé do centra naší planetární soustavy.
Pulzary jsou pozůstatkem vývojové fáze, kdy hmotná hvězda dospěje ke gravitačnímu kolapsu a exploduje jako supernova. Tyto pozůstatky (známé rovněž jako neutronové hvězdy) mají mimořádně vysokou hustotu odpovídající řádově 10 biliardám kilogramů na metr krychlový (hmotnost několika Sluncí je zhroucena do tělesa o průměru několika desítek kilometrů). Mají rovněž velmi silné magnetické pole, které způsobuje, že rychle rotující těleso vyzařuje silné svazky paprsků gama nebo rentgenového záření (případně rádiového záření) – které mu dodávají podobu majáku (objekt pulzuje – odtud označení pulzar).
Rozpálený povrch Merkuru se zdá být nepravděpodobným místem pro nalezení ledu, avšak vědci v průběhu posledních tří desetiletí prohlašují, že se voda ve zmrzlém stavu na první planetě od Slunce nachází, a to ukrytá na dnech kráterů, které jsou trvale ponořené do stínu před spalujícími slunečními paprsky. Z nové studie, kterou vypracovali vědečtí pracovníci pod vedením vědců z Brown University, vyplývá, že na povrchu planety Merkur může existovat mnohem více ledu, než se donedávna předpokládalo.
Působivá planetární mlhovina NGC 7009, známá též pod jménem Saturn, se zjevuje z temnoty v podobě skupiny podivně tvarovaných bublin krásně svítících v odstínech růžové a modré barvy. Tento pestrobarevný snímek byl pořízen pomocí výkonného zařízení MUSE a dalekohledu ESO/VLT v rámci projektu, který se poprvé zaměřil na mapování rozložení prachu v nitru planetární mlhoviny. Mapa odhalující paletu komplikovaných prachových struktur – obálek, hal i podivných vlnitých útvarů – astronomům pomůže pochopit, jakým způsobem se v planetárních mlhovinách utvářejí typické symetrické útvary.
Preeti Kharb a Dharam Vir Lal z National Centre for Radio Astrophysics (NCRA), TIFR, Pune, a David Merritt z Rochester Institute of Technology, New York, USA objevili nejtěsnější dvojici supermasivních černých děr ve spirální galaxii pojmenované NGC 7674, která je od Země vzdálena zhruba 400 miliónů světelných roků. Zdánlivá vzdálenost mezi oběma objekty v tomto binárním systému je menší než jeden světelný rok. To je mnohem méně než dosavadní platný rekord, kdy dvojici supermasivních černých děr dělila vzdálenost 24 světelné roky.
Dvojice astronomů z Université de Bordeaux navrhla novou teorii k vysvětlení původu hlavního pásu planetek ve Sluneční soustavě. Jejich článek byl publikován v časopise Science Advances. Sean Raymond a Andre Izidoro v něm popsali svoji teorii a co všechno zjistili, když se pokusili modelovat vývoj naší planetární soustavy.
Astronomové využili schopnosti radioteleskopu ALMA a pořídili překrásný záběr bubliny odvrženého materiálu, která obklopuje exotickou červenou hvězdu U Antliae. Tato pozorování vědcům pomohou lépe pochopit, jak se hvězdy vyvíjejí v pozdních stadiích svého života.
V mladém vesmíru přeměňovaly zářivé galaxie s bouřlivým vývojem doslova zběsilým tempem obrovské zásoby plynného vodíku na nové hvězdy. Energie z této dynamické tvorby vedla ke ztrátám velkého množství plynného vodíku unikajícího pryč z mladých galaxiích, což by mělo za následek omezení následného vznikání hvězd. Z tohoto důvodu není jasné, jakým způsobem byly mladé galaxie schopné udržet si svoji mladickou výkonnost tvorby hvězd i ve středním věku.