V rámci semináře Kosmonautika, raketová technika a kosmické technologie na naší hvězdárně přednášela mladá a nadějná studentka VUT a jedna z 26 vybraných účastníků mise Zero-G. Právě na této misi měla Tereza možnost zažít stav beztíže. Jaké to bylo, kolikrát ho vlastně zažila, ale taky čemu se ve volném čase věnuje člověk snící o vývoji satelitů, se dočtete zde.
Na počátku listopadu hvězdárna slavnostně otevřela novou budovu. Ta vyrostla na místě bývalých garáží v rámci projektu, jehož součástí byly největší změny v areálu hvězdárny za posledních zhruba 60 let. Cílem projektu Kulturní a kreativní centrum – Hvězdárna Valašské Meziříčí, p. o. spolufinancovaným Evropskou unií a Národním plánem obnovy bylo vybudování nového regionálního kreativního centra atraktivního nejen pro návštěvníky, zejména studenty, ale také pro partnery i z jiných regionů, otevírající dveře další spolupráci a inovacím a prohloubení mezisektorové spolupráce nejen v regionu.
Z české hvězdárny až pod hvězdnaté nebe chilských And. Cesta, která propojuje dvě polokoule jediným cílem: zachytit stopu minulosti Sluneční soustavy – a právě jejich zachycení a analýza spojují evropské nebe s chilskými výšinami. Nová síť kamer a spektrografů sleduje meteory, které nám odhalují chemické složení dávných těles a možná i samotný původ planet. Za technickým pokrokem se skrývají měsíce příprav, testování a náročná instalace v nesnadných podmínkách Jižní Ameriky. Jak se český tým vydal naproti vesmíru a proč je jižní obloha pro výzkum taktéž důležitá?
Aktuality AK

Teoreticky je možné, aby obyvatelné planety obíhaly i kolem pulsarů – rychle rotujících neutronových hvězd, které emitují krátké pulsy záření. Podle nových výzkumů však takové planety musí mít dostatečnou hmotnost a rozsáhlou hustou atmosféru, která přemění smrtící rentgenové paprsky a částice o vysokých energiích vyzařované pulsarem na teplo. Tyto závěry astronomů z University of Cambridge a Leiden University byly publikovány v časopise Astronomy & Astrophysics.

Astronomové dlouho studovali explodované hvězdy a jejich pozůstatky – známé jako pozůstatky po výbuchu supernov – za účelem lepšího pochopení toho, jak hvězdy vytvářejí a následně rozšiřují po vesmíru většinu chemických prvků pozorovaných na Zemi. Vzhledem ke svému unikátnímu postavení je Cassiopeia A (Cas A) jedním z nejpodrobněji studovaných pozůstatků supernov. Je od Země vzdálen 11 000 světelných roků. Studovaný útvar s rozptýlenými chemickými prvky je s teplotou několika miliónů stupňů velmi horký a svítí převážně v oboru rentgenového záření, které registrovala observatoř Chandra X-ray Observatory.

Krátce předtím, než v březnu 2016 neočekávaně ukončila svoji krátkou misi, zaznamenala japonská rentgenová kosmická observatoř Hitomi mimořádnou informaci o pohybech horkého plynu uvnitř kupy galaxií Perseus. Nyní, díky nebývalým detailům poskytnutým přístroji vyvinutými společně Japonskou kosmickou agenturou JAXA a NASA, byli astronomové schopni analyzovat mnohem detailněji chemické složení tohoto plynu. To jim umožnilo nový pohled na hvězdné exploze, které vytvořily většinu chemických prvků a vymrštily je do okolního prostoru.

Skupina astronomů včetně dvojice vědců z MIT (Massachusetts Institute of Technology) detekovala nejvzdálenější supermasivní černou díru pozorovanou do současné doby. Tato černá veledíra se nachází v centru mimořádně jasného kvasaru. Světlo, které astronomové pozorovali, opustilo kvasar pouhých 690 miliónů roků po Velkém třesku. Po 13 miliardách roků putování vesmírem dospělo záření až k nám – tento časový úsek téměř odpovídá stáří vesmíru.

Astronomové využívající dalekohled ESO/VLT poprvé v historii pozorovali strukturu granulace na povrchu vzdálené hvězdy – stárnoucího rudého obra π1 Gruis. Tento pozoruhodný nový snímek byl pořízen pomocí přístroje PIONIER. Odhaluje konvektivní buňky o průměru asi 120 milionů kilometrů tvořící povrchovou vrstvu mohutné hvězdy, která svou velikostí 350krát převyšuje Slunce. Výsledky byly publikovány v prestižním vědeckém časopise Nature.

Data získaná kosmickou sondou NASA s názvem Juno během jejího prvního průletu nad Velkou rudou skvrnou v atmosféře planety Jupiter v červenci 2017 naznačují, že tento ikonický útvar proniká hodně hluboko pod vrstvu viditelné oblačnosti. Další odhalení spočívá v tom, že Jupiter má dosud nezmapovanou radiační zónu. Objev byl oznámen 11. 12. 2017 na výroční schůzi Americké geofyzikální společnosti v New Orleans.

Filmy produkované v Hollywoodu a literatura science fiction podporují naše představy, že mimozemšťané jsou bytosti pocházejí z jiného světa, které jsou podobné monstrům, a které se velmi odlišují od lidí. Avšak z nových výzkumů vyplývá, že můžeme mít mnohem více společného s našimi možnými mimozemskými sousedy, než jsme si doposud mysleli.

Kamera OmegaCAM osazená na dalekohledu ESO/VST zachytila zářící hvězdnou porodnici Sharpless 29. Na záběru je zdokumentována celá řada astrofyzikálních procesů včetně oblaků plynu a prachu, které odrážejí, absorbují a opět emitují světlo mladých horkých hvězd ukrytých v nitru mlhoviny.

Nová pozorování rentgenového záření ukázala, že polární záře – na severní a jižní polokouli planety Jupiter – reagují rozdílně na obou pólech. To je nepochopitelné v porovnání se Saturnem nebo Zemí, kde jsou polární záře na severní a jižní polokouli vzájemným zrcadlovým obrazem. Poslední pozorování rentgenového záření jsou podnětná pro současné teoretické modely, které vysvětlují podstatu polárních září na Jupiteru. Vědci doufají, že na základě kombinace nových pozorování z rentgenových observatoří Chandra a XMM-Newton společně s daty ze sondy Juno se dozvědí více o zdrojích vzniku aurory na obří planetě.

Prachové částice, které kometa 67P/Čurjumov-Gerasimenko uvolnila do kosmického prostoru, se zhruba z poloviny skládají z organických molekul. Prach náleží k nejméně ovlivněnému a na uhlík bohatému materiálu ve Sluneční soustavě, který se od svého vzniku skoro vůbec nezměnil. Tyto závěry publikoval vědecký tým kolem přístroje COSIMA v časopise Monthly Notices of the Royal Astronomical Society. COSIMA je instrument na palubě evropské sondy Rosetta, který byl použit při výzkumu komety 67P/Čurjumov-Gerasimenko od srpna 2014 do září 2016. Ve své aktuální studii, do které se zapojili rovněž výzkumníci z Max Planck Institute for Solar System Research (MPS), komplexně analyzovali, jaké chemické prvky utvářejí kometární prach.
Hvězdárna Valašské Meziříčí, příspěvková organizace, Vsetínská 78, 757 01 Valašské Meziříčí