V prvním prázdninovém týdnu si vám dovoluji nabídnout malé ohlédnutí za činností astronomického kroužku a klubu, které již řadu let působí na naší hvězdárně.
Stát se vystudovaným astronomem nebo astrofyzikem bylo na počátku vzniku hvězdáren v 50. letech spíše snem než realitou. Veřejný vzdělávací systém tehdy nabízel pouze dvě cesty, jak se k astronomii či astrofyzice přiblížit – ani jedna z nich však nebyla příliš vhodná pro praktickou práci na hvězdárně."
Naši hvězdárnu navštívil dne 15. 5. 2025 Pavel Gabzdyl, přední popularizátor astronomie a největší fanoušek Měsíce. Mimo to, že nám přednesl krásnou přednášku Kosmická střelnice, jsme ho stihli i vyzpovídat.
Na základě dat pořízených kamerou Faint Object infraRed CAmera for the SOFIA Telescope (FORCAST) na palubě létající observatoře NASA/DLR Stratospheric Observatory for Infrared Astronomy (SOFIA) astronomové detekovali molekuly vody (H2O) ve Sluncem osvětleném kráteru Clavius, v jednom z největších kráterů viditelných ze Země, který se nachází na jižní polokouli Měsíce. Data z observatoře SOFIA odhalila vodu v koncentracích 100 – 412 ppm (parts per million) – což zhruba odpovídá ekvivalentu 355 mililitrů vody – zachycených v jednom metru krychlovém horniny rozptýlené po měsíčním povrchu.
Při použití nových pozorovacích dat založených na kosmickém přístroji Solar Mass Ejection Imager (SMEI) a tří odlišných modelovacích technik astronomové zjistili, že hvězda Betelgeuse – červený superobr v souhvězdí Orion – má průměr zhruba 764 průměrů Slunce, hmotnost mezi 16,5 a 19 hmotnostmi Slunce a od Země je vzdálena 548 světelných roků.
Dva týmy astronomů získaly přesvědčivé argumenty k vysvětlení 33 roků staré záhady obestírající supernovu 1987A ve Velkém Magellanově oblaku. Na základě pozorování prostřednictvím soustavy radioteleskopů ALMA (Atacama Large Millimeter/submillimeter Array) a následných teoretických studií vědci získali nový pohled a argumenty, že se hluboko uvnitř pozůstatků explodované hvězdy ukrývá neutronová hvězda. Jednalo by se tak ve skutečnosti o doposud nejmladší známou neutronovou hvězdu.
Vedení Evropské jižní observatoře ESO (European Southern Observatory) dalo po dlouhých diskusích a úvahách zelenou konstrukci extrémně velkého teleskopu ELT (Extremely Large Telescope), který bude mít průměr objektivu 39,3 metru. V závěrečné části článku se budeme věnovat především vědeckým přístrojům, které budou zpracovávat soustředěné světlo a hlavním vědeckým úkolům tohoto budovaného evropského dalekohledu.
Pomocí dalekohledů Evropské jižní observatoře (ESO) a dalších astronomických organizací po celém světě se vědcům podařilo zachytit vzácný úkaz – intenzivní záblesk záření doprovázející ‚slapové roztrhání‘ hvězdy superhmotnou černou dírou. Zjasnění, které jev vyvolal, bylo svého druhu nejbližší, jaké se dosud podařilo zaznamenat. Odehrálo se ve vzdálenosti asi 215 milionů světelných let a bylo tak možné ho studovat v nebývalých detailech. Výzkum byl prezentován v článku zveřejněném ve vědeckém časopise Monthly Notices of the Royal Astronomical Society.
Vedení Evropské jižní observatoře ESO (European Southern Observatory) dalo po dlouhých diskusích a úvahách zelenou konstrukci extrémně velkého teleskopu ELT (Extremely Large Telescope), který bude mít průměr objektivu 39,3 metru. Ve druhé části článku se budeme věnovat funkci jednotlivých zrcadel teleskopu a jejich náročné výrobě.
Vedení Evropské jižní observatoře ESO (European Southern Observatory) dalo po dlouhých diskusích a úvahách zelenou konstrukci extrémně velkého teleskopu ELT (Extremely Large Telescope), který bude mít průměr objektivu 39,3 metru. Důvod je jednoduchý: čím větší je průměr dalekohledu, tím více světla je schopen soustředit a tím více informací získat. V roce 2010 ESO vybrala pro budoucí umístění teleskopu horu Cerro Armazones v Chile, v nadmořské výšce 3 060 metrů. Chránit jej bude otáčivá kopule o průměru 86 m, která bude dosahovat přibližně 74 metry nad okolní terén. Celková hmotnost otáčivého zařízení uvnitř kopule včetně teleskopu a jeho montáže bude zhruba 2 800 tun.
Reinhard Genzel a Andrea Ghez společně obdrželi Nobelovu cenu za fyziku pro rok 2020 za práci na výzkumu superhmotné černé díry Sagittarius A* v srdci naší Galaxie, Mléčné dráhy. Reinhard Genzel, ředitel německého Max Planck Institute for Extraterrestrial Physics, a jeho tým prováděli pozorování zdroje Sagittarius A* po téměř 30 let s použitím flotily přístrojů a dalekohledů Evropské jižní observatoře (ESO).
Evropská sonda Mars Express objevila několik jezer kapalné vody ukrytých pod vrstvou ledu v oblasti jižní polární čepičky rudé planety. Pomocí radaru s názvem MARSIS (Mars Advanced Radar for Subsurface and Ionosphere Sounding) se podařilo odhalit jedno podpovrchové jezero o průměru 20 km již dříve – v roce 2018. Je ukryté pod zhruba 1,5 km tlustou vrstvou ledu. Nyní vzhledem k většímu množství údajů a k jejich detailní analýze odlišným způsobem, byla objevena tři nová jezera. Největší z podpovrchových jezer měří zhruba 20 × 30 km a je obklopeno několika menšími jezírky o průměru několika kilometrů. Voda v nich je pravděpodobně velmi slaná, protože setrvává v kapalném stavu i za nízkých teplot.
Pomocí dalekohledu ESO/VLT astronomové objevili šestici galaxií ležících v okolí superhmotné černé díry. Uskupení se nachází velmi daleko a pozorujeme ho tak, jak vypadlo v době, kdy byl vesmír méně než miliardu let starý. Vůbec poprvé se podařilo spatřit podobně kompaktní skupinu v tak rané fázi vývoje vesmíru. Objev astrofyzikům pomůže lépe pochopit procesy, které vedly k rychlému vzniku superhmotných černých děr a jejich dalšímu růstu do enormních rozměrů. Získaná pozorování podporují teorii, že tyto extrémní objekty velmi rychle přibývají na váze uvnitř rozsáhlých struktur obsahujících značné množství plynu, které strukturou připomínají pavučinu.