V prvním prázdninovém týdnu si vám dovoluji nabídnout malé ohlédnutí za činností astronomického kroužku a klubu, které již řadu let působí na naší hvězdárně.
Stát se vystudovaným astronomem nebo astrofyzikem bylo na počátku vzniku hvězdáren v 50. letech spíše snem než realitou. Veřejný vzdělávací systém tehdy nabízel pouze dvě cesty, jak se k astronomii či astrofyzice přiblížit – ani jedna z nich však nebyla příliš vhodná pro praktickou práci na hvězdárně."
Naši hvězdárnu navštívil dne 15. 5. 2025 Pavel Gabzdyl, přední popularizátor astronomie a největší fanoušek Měsíce. Mimo to, že nám přednesl krásnou přednášku Kosmická střelnice, jsme ho stihli i vyzpovídat.
Největší Saturnův měsíc Titan je kromě Země jediným místem, o němž je známo, že má atmosféru a na jeho povrchu se nacházejí kapaliny v podobě řek, jezer a moří. Vzhledem k extrémně nízké teplotě jsou kapaliny na Titanu tvořeny uhlovodíky, jako je metan a etan, a povrch je tvořen pevným vodním ledem.
V centru galaxie Centaurus A se nachází supermasivní černá díra, která se živí plynem a prachem, jež ji obklopuje, a z níž vylétají velké proudy vysokoenergetických částic a dalšího materiálu. Galaxie Centaurus A, která se nachází ve vzdálenosti 12 milionů světelných let, oslňuje na složeném snímku, na němž je vidět jeho supermasivní černá díra a rozsáhlé výtrysky, které vyzařuje a které jsou viditelné v rentgenovém i v optickém světle.
Betelgeuze, známá také jako Alfa Orionis nebo Alfa Ori, je druhým nejbližším červeným veleobrem k Zemi. Od listopadu 2019 do března 2020 tato hvězda zažila historické snížení své jasnosti. Obvykle má zdánlivou magnitudu mezi 0,1 a 1, její vizuální jasnost se kolem 7.–13. února 2020 snížila na 1,6 magnitudy – událost označovaná jako Betelgeuze’s Great Dimming (velké stmívání Betelgeuze). Nový výzkum ukazuje, že pozorované ztemnění je pravděpodobně způsobeno neviditelnou doprovodnou hvězdou obíhající kolem červeného obra. Tento společník se jmenuje Alfa Ori B nebo Betelbuddy a při obíhání kolem obří hvězdy se chová jako sněhový pluh; vytlačuje prach blokující světlo z cesty a dočasně činí Betelgeuze jasnější.
Bílé okraje podél těchto roklí na Marsu v oblasti Terra Sirenum jsou pravděpodobně tvořeny prachovým vodním ledem. Vědci se domnívají, že pod povrchem tohoto druhu ledu by se mohla tvořit tající voda, která by poskytovala prostor pro možnou fotosyntézu. Jedná se o snímek se zvýrazněnou barvou; modrá barva by ve skutečnosti nebyla lidským okem vnímatelná.
Nedávný výzkum astrochemika Ryana Fortenberryho (na fotografii) z University of Mississippi naznačuje, že kyselina glycerová [HOCH2CH(OH)COOH], stavební kámen života, může vznikat i ve vesmíru. Vědci odhalují stavební kameny života na Zemi tím, že znovu vytvářejí složité molekuly. Ze všech otázek, které si v posledních několika tisících letech klademe o vesmíru, vyniká nedávná publikace jednoho výzkumníka: „Je vesmír sladký nebo kyselý?“
Vědci využívají simulace a data z teleskopu South Pole Telescope k detekci slabého kinetického kSZ efektu, který je klíčem k pochopení epochy reionizace, kdy došlo k ionizaci vesmíru prvními hvězdami. Představte si, že se vydáte na cestu do úplných počátků vesmíru, konkrétně na začátek epochy reionizace (EoR). Tehdy vznikly první hvězdy a galaxie a jejich energie oddělila protony a elektrony hustého, temného prvotního vodíkového plynu, který tvořil vesmír, a vytvořila bubliny ionizovaného plynu.
Vědci navrhují, že splynutí černých děr může pomoci odhalit nové částice pomocí analýzy gravitačních vln, což představuje nový přístup k detekci částic. Splývající černé díry mohou odhalit nové částice prostřednictvím gravitačních vln, a to buď ionizací, nebo specifickými změnami oběžných drah. To nabízí nové strategie pro hledání ultralehkých částic.
Výzkumníci z Imperial College London zjistili, že před 4,5 miliardami let vodní led modifikoval asteroidy způsobem, který mohl vést k počátku života na Zemi. Na obrázku je umělecké ztvárnění gejzírů unikajících z asteroidů v rané Sluneční soustavě. Led na dávných asteroidech, jako je Ryugu, mohl mít zásadní význam pro vznik života na Zemi.
Nové poznatky o hvězdné nukleosyntéze ukazují, že klíčovým mechanismem vzniku těžkých prvků je „intermediální i-proces“, přičemž experimenty naznačují, že primárním místem těchto reakcí by mohli být bílí trpaslíci. Nedávné studie v jaderné astrofyzice představily „meziproces i“, kritickou reakční cestu pro syntézu těžkých prvků, jako je lanthan, ve hvězdách. Díky experimentům na předních pracovištích, jako je Argonne National Laboratory, vědci zpřesňují naše znalosti tohoto procesu a navrhují bílé trpaslíky jako pravděpodobná místa těchto jaderných reakcí.
Snímky z observatoře Solar Dynamics Observatory (SDO) ukazují vzhled Slunce v době slunečního minima (vlevo, prosinec 2019) a slunečního maxima (vpravo, květen 2024). Tyto snímky jsou pořízeny na vlnové délce extrémního ultrafialového světla, které odhaluje aktivní oblasti na Slunci, jež jsou častější během slunečního maxima. Na telekonferenci s novináři zástupci NASA, Národního úřadu pro oceán a atmosféru (NOAA) a mezinárodního panelu pro předpověď slunečních cyklů oznámili, že Slunce dosáhlo svého slunečního maxima, které by mohlo pokračovat i v příštím roce.