Z české hvězdárny až pod hvězdnaté nebe chilských And. Cesta, která propojuje dvě polokoule jediným cílem: zachytit stopu minulosti Sluneční soustavy – a právě jejich zachycení a analýza spojují evropské nebe s chilskými výšinami. Nová síť kamer a spektrografů sleduje meteory, které nám odhalují chemické složení dávných těles a možná i samotný původ planet. Za technickým pokrokem se skrývají měsíce příprav, testování a náročná instalace v nesnadných podmínkách Jižní Ameriky. Jak se český tým vydal naproti vesmíru a proč je jižní obloha pro výzkum taktéž důležitá?
V prvním prázdninovém týdnu si vám dovoluji nabídnout malé ohlédnutí za činností astronomického kroužku a klubu, které již řadu let působí na naší hvězdárně.
Stát se vystudovaným astronomem nebo astrofyzikem bylo na počátku vzniku hvězdáren v 50. letech spíše snem než realitou. Veřejný vzdělávací systém tehdy nabízel pouze dvě cesty, jak se k astronomii či astrofyzice přiblížit – ani jedna z nich však nebyla příliš vhodná pro praktickou práci na hvězdárně."
Tento kompozitní pohled (vlevo) zobrazující vulkanickou aktivitu na Jupiterově měsíci Io byl vytvořen na základě dat ve viditelném světle a v oboru infračerveného záření, která shromáždila sonda NASA s názvem Juno během průletu kolem měsíce Io 1. března 2023. Pohled na měsíc (ve strakaté šedé a hnědé barvě) poskytla kamera JunoCam. Překryvy červené, žluté a jasně bílé barvy jsou data z přístroje JIRAM (Jovian Infrared Auroral Mapper).
Pomocí dat ze spektrografu Near-Infrared Spectrograph (NIRSpec) na palubě vesmírného teleskopu Jamese Webba (JWST) astronomové detekovali oxid uhličitý (CO2) a peroxid vodíku (H2O2) na zmrzlém povrchu Charona, měsíce Pluta. Jejich zjištění poskytují nové poznatky o chemických procesech a složení povrchu Charona, což by nám mohlo pomoci pochopit původ a vývoj ledových těles ve vnějších oblastech Sluneční soustavy. Spektrální podpisy oxidu uhličitého a peroxidu vodíku na Charonu pomocí pozorování Webbovým dalekohledem (bílá), která prodlužují pokrytí vlnovou délkou předchozích měření průletu New Horizons (růžová) – viz obrázek.
V podivné galaxii našel Webbův teleskop potenciální chybějící spojení s prvními hvězdami ve vesmíru. Při pohledu hluboko do raného vesmíru pomocí vesmírného dalekohledu NASA James Webb Space Telescope (JWST) našli astronomové něco bezprecedentního: galaxii s podivným světelným podpisem, který připisují jejímu plynu, který zastiňuje hvězdy. Galaxie GS-NDG-9422 (zkráceně 9422), nalezená přibližně jednu miliardu let po Velkém třesku, může být fází chybějícího článku galaktického vývoje mezi prvními hvězdami vesmíru a známými, dobře zavedenými galaxiemi.
V posledním desetiletí byla kosmická sonda MAVEN od NASA klíčová v rozšiřování našeho chápání Marsu, zejména se zaměřením na atmosféru planety a její reakci na sluneční vlivy. Zjištění sondy, od atmosférické eroze během slunečních bouří až po nové polární záře na marťanském nebi, nabízejí zásadní pohled na klimatickou historii Marsu a jeho vývoj od potenciálně obyvatelného prostředí po pustou poušť.
Astronomové objevili kolosální výtrysky černé díry, pojmenované Porphyrion, táhnoucí se 23 milionů světelných let napříč a daleko přesahující svou velikostí naši Mléčnou dráhu. Tento ohromující objev, uskutečněný pomocí radioteleskopů jako ASKAP a LOFAR, odhaluje, jak supermasivní černé díry vyvrhují výtrysky (tzv. jety), které se pohybují téměř rychlostí světla navzdory vesmírným překážkám. Zvláštní přímost a trvalá síla Porphyriona, který přežil asi 2 miliardy let, zpochybňuje současné chápání dynamiky černých děr a environmentálních faktorů, které je ovlivňují.
Nová studie zdůrazňuje hlavní gravitační oblasti ve vesmíru a ukazuje Velkou zeď Sloan jako nejhmotnější, což potenciálně přetváří naše chápání místních kosmických struktur. Výzkumníci zmapovali gravitační „povodí přitažlivosti“ v místním vesmíru a vrhli nové světlo na obrovské kosmické struktury, které utvářejí pohyb galaxií. Pomocí pokročilých dat z Cosmicflows-4 kompilace vzdáleností a rychlostí zhruba 56 000 galaxií vědci aplikovali nejmodernější algoritmy k identifikaci oblastí, kde dominuje gravitace, jako je Sloan Great Wall a Shapley Supercluster. Tato studie naznačuje, že Mléčná dráha s největší pravděpodobností sídlí ve větší Shapleyově pánvi, což posouvá naše chápání kosmických toků a role masivních struktur při utváření evoluce vesmíru.
V roce 1665 italský astronom Giovanni Cassini pozoroval obří tmavou skvrnu na Jupiteru, kterou nazval „Permanent Spot“ (Trvalá skvrna). Přestože astronomové záhadně ztratili stopu po celá staletí, vždy jsme si mysleli, že původní „Permanent Spot“ by mohla být Velká rudá skvrna – masivní bouře v atmosféře Jupitera – kterou dnes známe.
Nedávno byli vědci i internet ohromeni, když Perseverance spatřila černobílý pruhovaný kámen, který se na Marsu nepodobal žádnému z předchozích. Je to známka vzrušujících objevů, které přijdou? Už je to skoro měsíc, co rover začal stoupat po strmých svazích vedoucích k okraji kráteru při honbě za prastarými kameny, které by nás mohly poučit o rané marťanské historii. Zatímco tyto složité svahy vedly k pomalému počátečnímu stoupání, pokrok v jízdě se v posledních dnech výrazně zlepšil, protože Perseverance křižovala po rovinatějším úseku. Z tohoto výhledu nyní rover může spatřit orientační body z dřívějších dob mise, jako je ikonický výběžek „Kodiak“ na zamlženém obzoru v důsledku obsahu prachu z nedalekých prachových bouří.
Existuje významný rozdíl mezi dvěma okraji atmosféry WASP-107 b, superneptunské exoplanety o velikosti planety Jupiter, ale pouze o desetině její hmotnosti. WASP-107 je vysoce aktivní hvězda hlavní posloupnosti spektrálního typu K nacházející se asi 212 světelných let daleko v souhvězdí Panny. Hvězda hostí WASP-107 b, jednu ze známých exoplanet s nejnižší hustotou – typ, který astrofyzikové nazvali „super-puff“ neboli „cukrová vata“.
Nedávno objevený blízkozemní asteroid s názvem 2024 PT5 se stane v období od 29. září do 25. listopadu 2024 miniměsícem Země. „Země může pravidelně zachytávat asteroidy z populace blízkozemských objektů (NEO – Near-Earth Object) a usadit je na oběžné dráze, čímž z nich udělá miniměsíce,“ napsali ve svém článku vědci z Universidad Complutense de Madrid Carlos de la Fuente Marcos a Raúl de la Fuente Marcos. „Někdy při těchto dočasných zachycení nedokončí ani jeden oběh, než uniknou z oběžné dráhy a vrátí se na své pravidelné heliocentrické trajektorie.“